Date of Award
5-2019
Document Type
Thesis open access
Department
Computer Science
First Advisor
Mark Lewis
Abstract
Accurate load forecasting greatly influences energy production planning. If the demand forecast is inaccurate this could lead to blackouts or waste of precious energy. This paper compares many innovative networks on the basis of accuracy. The first is a feedforward neural network (FFNN). Next we look at different models of Recurrent Neural Networks (RNN) specifically long short term Memory (LSTM). Finally we explore combining the two approaches into a hybrid network. We will be predicting load with an hourly granularity also known as short term load forecasting (STLF). We will be applying these approaches to real world data sets from www.eia.gov over a period of about 4 years. Our approach will focus on the integration of historical time features from the last hour, day, month, etc. with the inclusion of RNN methods. We show that the included time features reduce the overall error and increase generalizability. We combine this with features such as weather, cyclical time features, cloud cover, and the day of the year to further reduce the error. We will then compare the approaches to reveal that the correct handling of time features significantly improves the model by learning hidden features.
Recommended Citation
Loder, Andrew K., "Short Term Load Forecasting Using Recurrent and Feedforward Neural Networks" (2019). Computer Science Honors Theses. 46.
https://digitalcommons.trinity.edu/compsci_honors/46
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.