Document Type
Post-Print
Publication Date
2011
Abstract
This survey contains the most updated results on the dynamics of periodic difference equations or discrete dynamical systems this time. Our focus will be on stability theory, bifurcation theory, and on the effect of periodic forcing on the welfare of the population (attenuance versus resonance). Moreover, the survey alludes to two more types of dynamical systems, namely, almost periodic difference equations and stochastic di®erence equations.
Editor
Mauricio Matos Peixoto, Alberto Adrego Pinto, David A. Rand
Identifier
10.1007/978-3-642-11456-4_19
Publisher
Springer
City
Heidelberg
ISBN
9783642114564
Repository Citation
Elaydi, S. N., Luís, R., & Oliveira, H. (2011). Towards a theory of periodic difference equations and its application to population dynamics. In M. M. Peixoto, A. A. Pinto, & D. A. Rand (Eds.), Springer Proceedings in Mathematics: Vol. 1. Dynamics, Games and Science I (pp. 287-321). http://doi.org/10.1007/978-3-642-11456-4_19
Publication Information
Springer Proceedings in Mathematics: Dynamics, Games and Science I