Title
Topological Comparison of Some Dimension Reduction Methods Using Persistent Homology on EEG Data
Document Type
Article
Publication Date
7-18-2023
Abstract
In this paper, we explore how to use topological tools to compare dimension reduction methods. We first make a brief overview of some of the methods often used in dimension reduction such as isometric feature mapping, Laplacian Eigenmaps, fast independent component analysis, kernel ridge regression, and t-distributed stochastic neighbor embedding. We then give a brief overview of some of the topological notions used in topological data analysis, such as barcodes, persistent homology, and Wasserstein distance. Theoretically, when these methods are applied on a data set, they can be interpreted differently. From EEG data embedded into a manifold of high dimension, we discuss these methods and we compare them across persistent homologies of dimensions 0, 1, and 2, that is, across connected components, tunnels and holes, shells around voids, or cavities. We find that from three dimension clouds of points, it is not clear how distinct from each other the methods are, but Wasserstein and Bottleneck distances, topological tests of hypothesis, and various methods show that the methods qualitatively and significantly differ across homologies. We can infer from this analysis that topological persistent homologies do change dramatically at seizure, a finding already obtained in previous analyses. This suggests that looking at changes in homology landscapes could be a predictor of seizure.
DOI
10.3390/axioms12070699
Publisher
MDPI
ISSN
2075-1680
Repository Citation
Kwessi, E. (2023). Topological comparison of some dimension reduction methods using persistent homology on EEG data. Axioms, 12(7), Article 699. https://doi.org/10.3390/axioms12070699
Publication Information
Axioms
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.