Document Type

Post-Print

Publication Date

7-2014

Abstract

We consider continuous triangular maps on IN, where I is a compact interval in the Euclidean space R. We show, under some conditions, that the orbit of every point in a triangular map converges to a fixed point if and only if there is no periodic orbit of prime period two. As a consequence we obtain a result on global stability, namely, if there are no periodic orbits of prime period 2 and the triangular map has a unique fixed point, then the fixed point is globally asymptotically stable. We also discuss examples and applications of our results to competition models.

Identifier

10.1016/j.na.2014.03.019

Publisher

Elsevier Ltd.

Publication Information

Nonlinear Analysis: Theory, Methods & Applications

Included in

Mathematics Commons

Share

COinS