Title
Model Averaging Based on Rank
Document Type
Article
Publication Date
2017
Abstract
In this paper, we investigate model selection and model averaging based on rank regression. Under mild conditions, we propose a focused information criterion and a frequentist model averaging estimator for the focused parameters in rank regression model. Compared to the least squares method, the new method is not only highly efficient but also robust. The large sample properties of the proposed procedure are established. The finite sample properties are investigated via extensive Monte Claro simulation study. Finally, we use the Boston Housing Price Dataset to illustrate the use of the proposed rank methods.
Identifier
10.1080/02664763.2017.1401051
Publisher
Taylor & Francis
Repository Citation
Du, J., Chen, X., Kwessi, E., & Sun, Z. (2017). Model averaging based on rank. Journal of Applied Statistics, 45(10), 1900-1919. doi:10.1080/02664763.2017.1401051
Publication Information
Journal of Applied Statistics